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Abstract-The problem of evaporation from a spherical liquid drop translating in an electric field is 
investigated with perturbation solutions. The total flow field, a combination of the drop creeping trans- 
lation, the electrically generated Taylor motion, and a strong non-uniform evaporation velocity assumed 
to be one order-of-magnitude larger than the farmers, is solved by a regular perturbation technique in 
which the Reynolds number is used as the expansion parameter. The conservation equations of heat and 
mass transfer for the continuous and dispersed phases are solved by ~rturbation methods with the overall 
solution being second order accurate with respect to the perturbation variable. The results obtained from 
the sample calculations indicate that the electric field only alters the local temperature and concentration 
profiles. Prom the computational point of view, the current formulation is very useful, and may be used 
to handle a condensing drop as well as nonlinearities arising from the interactions of the thermal radiation 
at the drop surface. Therefore the analytical solution may easily be adopted in a large computer code which 

does the entire system simulation. 

1. INTRODUCTION 

THE EVAPORATION of liquid droplets has played a key role in many areas of technical importance. Of particular 
interest to this paper is the field of spray combustion where the game structures are greatly de~ndent upon 
the rates of evaporation from the fuel drops. Due to the popuiar applications of fuel spray combustion, 
numerous theoretical and experimental studies on the vaporization process have been conducted in the past 
few decades. Recently, these studies have been documented in many excellent authoritative reviews, among 
them are those by Law {1,2], and Sirignano [3]. 

In general, the evaporation from a drop is a very complex phenomenon such that any analysis would require 
a simultaneous description of momentum, heat, and mass transfer in the gas phase as well as in the drop phase. 
together with the thermodynamic couplings between the temperature and the species concentration at the drop 
surface. A number of models with varying level of complexities have been proposed to examine various aspects 
of combustion, Perhaps, the most elementary one would be the d2-Law (see any basic textbook on combustion 
or one of the reviews cited above) developed for an isothermal drop held at a temperature close to the boiling 
point in a non-convective atmosphere. More often than not, the vaporizing drop also experiences a relative 
gas-liquid velocity; thus introducing a flow pattern, similar to Hill’s spherical vortex, inside the drop. With 
the addition of an electric field of sufficient strength, the flow fields inside and outside the liquid sphere are 
significantly altered as a result of the charge accumulation at the gas-liquid interface. Such a flow modification 
is caused by the surface charges which interact with the electric field to produce electrical stresses whose 
tangential component is balanced by the fluid motion. The resulting velocity field is of practical interest because 
it can enhance the heat and mass transfer rates. Transport processes under this situation may be modeled 
according to the controlling resistance of the two-phase system. If the transfer resistance in the gas phase is 
dominant, the transport process may be considered as an external problem [46]. The other extreme. i.e. the 
internal problem, was treated by Chung et al. [7]. With the two phases having comparable transfer resistances, 
the processes have to be modeled as a conjugate problem [8-lo]. All of the above studies indicate an electrical 
enhancement in heat and mass transfer caused by the two-phase flow/electric field interactions. For a com- 
plete discussion on a more general fundamental electrohydrodynamic effects on fluid flow, heat transfer, 
and combustion, the reviews by Melcher and Taylor Ill], Jones 1121, and Bradley [13], respectively are 
recommended. 

To date, assessment of the electric field effects on the flame structure have only been carried out exper- 
imentally, but theoretical modeling has never been attempted. Even though promising speculations have been 
supported by concrete experimental evidence, the need of an understanding of the physical phenomena is 
crucial for proper applications. It is, therefore, the purpose of this paper to examine how the combined flow 
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NOMENCLATURE 

CP heat capacitance at constant pressure 
9 mass diffusivity 
E uniform electric field strength 

*rs latent heat of vaporization 

Px k th order Legendre polynomial 
Pr Prandtl number 
B pressure 
Qk k th order of Legendre polynomial of 

second kind 

x 
radial coordinate 

Rg 

gas constant 
instantaneous drop radius 

SC Schmidt number 

8 surface tension coefficient 
T absolute temperature 
U velocity vector 
W molecular weight 
x mass fraction of the vaporizing species 
2 dimensionless temperature. 

Greek symbols 

; 

thermal diffusivity 
Stefan-Boltzmann constant 

E Reynolds number based on streaming 
velocity 

E electric permittivity 
tl polar angle 
K thermal conductivity 

!J dynamic viscosity 

!i cosine of polar angle 
V kinematic viscosity 

P outer variable 

e density 
B electric resistivity 

dimensionless time 

:.. permittivity ratio of continuous to drop 
phase 

@‘p dynamic viscosity ratio of continuous to 
drop phase 

Qt, resistivity ratio of continuous to drop 
phase 

cp absorptivity. 

Subscripts 
0 initial value 
b normal boiling point condition 
E pertaining to electric field 
i 1 for continuous phase and 2 for dispersed 

phase 
r radial component 
S interfacial value 
SS steady state 
sat saturation state 
0 angular component 
rB shear component 
co value far away from interface. 

field, translational and electrically-generated motions, affect the transport processes during the course of 
evaporation. 

2. PROBLEM STATEMENT 

We shall consider a pure liquid drop of initial radius R,, and at temperature To travelling at the terminal 
velocity U, in a quiescent environment at temperature 7’, and that the two-phase system is subjected to a 
uniform electric field of strength E. Because T, > To heat is transported towards the drop by simultaneous 
convective and diffusive mechanisms. At the drop surface, a portion of the heat is consumed to sustain the 
vaporization process while the remainder continues to penetrate into the droplet to heat up the liquid. For the 
physical system so described, we now develop a transport model with the following simpli~cations. (i) The 
drop remains spherical throughout its lifetime since we are considering a drop on the order of 10 to 100 
microns. The electric field tends to stretch the drop into an ellipsoidal shape with the major axis lying parallel 
to the electric field lines. Even so, the departure from the sphericity can only be reached to a certain degree 
and further deformation would make the drop unstable and it would shatter into a number of smaller droplets 
[ 141, thereby reducing the tendency of distorsion. Stewart and Morrison [ 1.51 showed that the drop deformation 
is of minor importance for low Reynolds number flows. (ii) The gas and liquid are Newtonian fluids and have 
constant physical properties recommended to be taken at the reference temperature as suggested by the simple 
‘one-third rule’ [lb]. Also, electrical conductivities of the two fluids are low enough to prevent electric and 
magnetic couplings. Because the flow field induced by the electrical forces is similar to that investigated by 
Taylor [17], limitations discussed in his paper are also carried over to this study. (iii) The flows inside and 
outside the drop are axisymmetric, fully developed, and are in the creeping regime. In view of the large density 
ratio between the liquid and the gas, the velocities are considered to be quasi-steady and that the normal 
component of the liquid velocity at the interface is assumed to be negligibly small [18]. (iv) The heat and mass 
transfer processes in the gas phase are quasi-steady, but the liquid heating is transient. This assumption is 
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justified from the fact that the gas phase heat and mass diffusivities rates are of the order of lo- ‘-10’ cm* 
s - ’ while the liquid phase thermal diffusivity is of the order of 10e3 cm2 SK’ and the drop surface area 
regression rate is approximately 10-4-10-3 cm2 s- ‘. These data imply that the gas always adjusts to the 
changes at the boundary instantaneously. 

3. METHOD OF ANALYSIS 

3.1. Fluid motion 
For a steady incompressible flow about a liquid sphere, the governing equations describing the motion of 

the two-phase system are given as 

v*u=o (1) 

@U*VU+VY = pv2u (2) 

which are valid for both the gas and liquid phases ; however, a hat will be used to distinguish the liquid phase 
hereafter. The boundary conditions accompanying the above equations can be expressed as follows : 

U,(r-+co,e)=U,cose, U,(r-+ax,O)= -U,sin0 

0@(r -+ 0,Q) is finite 

U,(r=R,e) =u,,+u,,P,(~o~e)+u,,P,(~0~e)+u,,P,(c0se) 

C?Jr = R,B) = 0 

(3a) 

(3b) 

(3c) 

(34 

U,(r = R, 0) = oO(r = R, 0) (34 

Y,@,(r = R,e)+TJr = R,@)-g&r = R,0) = 0 (30 

where P,(cos 0) is the Legendre polynomial of degree k, 9+ is the electrical tangential stress induced by the 
electric field. U = (U,, U,) is the velocity vector, Q and p are the density and dynamic viscosity respectively, 
and B is the pressure. For a full derivation of Yfi,, the readers are referred to the classical paper of Sir Geoffrey 
Taylor [17]. As shown in equation (3c), the assumed functional form of the interfacial normal velocity is 
composed of two parts. The leading order term u 00 represents the potentially large evaporation velocity for a 
stationary drop and is assumed to be one order of magnitude larger than the droplet creeping motion. The 
angular variation terms account for the interfacial velocities that are induced due to droplet motion and the 
electric field. The PO and P, terms were shown to be adequate for a translating drop [18] while the P2 term is 
added to properly model the electric field effects [ 191. 

Similar to the method adopted in Sadhal and Ayyaswamy [18], and Chung et al. [20], the velocities and the 
pressures of the gas and the liquid phases are assumed to be in the following perturbation forms : 

u = uo + U’, a=o, B=80+8’, 9=&. (kb,c,d) 

The first term on the right-hand-side of (4a), U,,, which is independent of the drop translation, represents the 
uniform evaporation velocity in the radial direction as discussed above. According to (3c), U0 is the dominant 
order and the combined translation and the electric field induced velocity, U’, is the perturbed portion. In the 
liquid phase only the perturbed quantity exists. 

Before going into the details of the solution, let us first introduce the following dimensionless variables: 
u; = u,/uoo, u’* = U/U,, ti!* = 0/u,, u,,~,~~0~e~+u,,~,~cose~+u2,~2~~0~e~ = ~uo,p,(cOse)+ 
u,,P,(~os~)+u,,P,(cos~)~~~,, r* = r/R, E = (u,R)/ v, 2 = (U=R)/$, U,, = uooR/v, Qp = p/p, 9’3 = gO/ 
(u&R), 9’* = S”/(ZJ,p/R), &* = @‘/(U,$/R), V* = RV, 9* = (BR2)/(vp), and 8* = (@R’)/v^$. The 
main idea here is to scale the leading and perturbed terms of the velocity by uO,,, and U,, respectively. 
Following Nguyen and Chung [19], the dependent quantities are now expanded as 

u = u,ourJ+Eu 

= u,,u,+Eu,+&*u,+ ‘.’ (54 

fJ=& 

=&,+E^qJ2+... (5b) 

where U, = (U,,, Ud, U, = (U,,, U,,), 0, = (oil,, fi,s), etc. Note that asterisks have been omitted for 
convenience. 

Inserting these into equations (1) and (2) and equating terms of the same powers in E leads to a series of 
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differential equations. While the leading order velocity in the gas phase is simply U, = (l/u’, 0), the first order 
correction is obtained from the following biharmonic equations : 

i ~~+i~~~~l_~,=~~(~_i)[~+!~~]~, (64 
L, $+I$~ *q,=o w 1 (6b) 

where ,C = cos 0 and Y is the dimensionless stream function which is related to the velocity components by 

I ay’, 1 
u,, = - r’ --$F’ U,# = - 

ay, 
~$1 -p2)i~2 & Ua,b) 

subjected to 

Y,(co,F) = +*(1--j’) 

ay, 
--:,,(l:Pl = u,,~,(~)+u,,P,(L7)+u,,~*(~) 

(84 

@b) 

%(l.P) = 0 I 

$ li,, (0, j) is finite @f) 

where the quantity @,, stands for the dynamic viscosity ratio of the continuous to the dispersed phase, and is 
likewise for other physical properties. The parameter W represents a measure of the relative importance of 
the electric field to the translating motion of the drop, i.e. 

and 

9E^‘RE’(l-@,.@,) 

vCr = lop(oP+ 1)(2+(I),,)* 
(9b) 

where Vcr is the maximum speed generated by the electric field in the absence of translation, E is the electric 
field strength, E’ and 0 are the electrical permittivity and resistivity, respectively. An inspection of the expression 
for W indicates that it can be either positive or negative depending on whether the direction of internal 
circulation is from the pole to the equator (+ V,,) or from the equator to the pole (- Vcr). These two possible 
directions are dictated by the electrical properties of the two phases such that @‘,a’, < 1 for the former, and 
greater than unity for the latter case. 

As in the Galerkin method, the solution to equations (6a) and (6b) subjected to boundary conditions (8a)- 
(8f) is now approximated as : 

Y, = -U,,,Q,,(p)+ tr*+$+$+++$ ) I ( ) (10) Q (,C)+ 2+$+$+$ Q*(P) 

9, = (~,r’+A^2r4)QI(p)+(~,r3+~,rs)Q2(,C) 

where the function Qk(~) is defined as 

“(‘) = 4 ’ p (p*) dp*, k + 0 iz 
-I 

P> 

i s 
k=o 

(12) 

in which the coefficients in equations (10) and (11) are found from the boundary conditions and the additional 
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four Galerkin conditions. The first two require that the solution be error free on the surface of the drop while 
the second two require that errors be distributed evenly throughout the continuous phase. After considerable 
manipulation, one obtains the following system of algebraic equations : 

2A, +2A,+2A3+2A4 = U,, -1 (13) 

2AS+2As+2A,+2As = U2, (14) 

a,+a,=o (15) 

a,+‘& = 0 (16) 

A,+2A2+3A3+4A4+2~2 = 1 (17) 

2A,+3A,+4A,+5A,+2a4 = 0 (18) 

@,(3A,+6A,+lOA,+l5A,)-3& = 0 (19) 

@J3A,+7A,+l2A,+l8A,)-5A^, = - fW-@,U,, (20) 

A,(72+24U0,,)+A,(280+70U,,0)+A,(720+144U,,) = 0 (21) 

A,(144+42U,,0)+A,(504+l12U00)+As(1200+216U00) = 0 (22) 

A,(12+~U~~)+A,(40+~ULI,,)+A,(90+16U~,J =0 (23) 

A,(18+~U~~)+A,(56+~Uoo)+A,(120+ifhU,,) = 0. (24) 

Once the constants are determined, the velocities can be computed using (7a) and (7b). The results are 

U,(r,@)=~PG)+E 
i 

FP,(p)+2 
( 

k+$+$+$+$ 
)I( 11 

P (p)+2 $+$+$+S P2(p) 

(25) 

U,(r,O) = --E l-$-2$-3$-4$ 2$+3$+4$+5$ (26) 

ir,(r,e) = Z{A,(2-2r2)P,(ii)+2A,(r-r3)P2($} (27) 

ir,(r,e) = -.C{A,(2-4r*)Pi(p)-A3(3r+5r3)Pl($} (28) 

where P: ( ji)s have been defined slightly different from the associated Legendre functions of degree k and order 
1 as 

(29) 

Knowing the velocity, the drag force acting on the liquid drop can be obtained. For a droplet experiencing 
an interfacial mass flux, the total drag is the sum of three contributions : the skin friction forces, the pressure 
forces, and the forces induced by the momentum flux. Because the derivation is straightforward, there is no 
need to repeat it here, only the final result is given, 

F. =~[4U,,-4-8A,-16A2-38A3-80A,-Uo,(U,,-4A,-l0A2-l8A3-28A,+l)] 

which has been normalized with the value of the solid sphere, 3xpU, D. 

(30) 

3.2. Heat and mass transfer in the continuous phase 
The energy and the species equations in the gas phase are written in terms of the dimensionless temperature, 

Z = (T- T,)/(To - T,), and the mass fraction X as 

1 
(31) 

(32) 

where the Pr (= v/cc) and SC ( = v/9) are the Prandtl and Schmidt numbers, respectively. The transfer coefficients 
v, CI, and 9 are the momentum, thermal, and mass diffusivities, respectively. The boundary conditions of 
equations (3 1) and (32) are the followings : 
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Z(r -+ a&/i) = 0 

SZ 
z(r,ji= *I)=0 

Z(r= 1,P) = ~,,+E[ZOIPO(~~)+ZIIPI(P)+ZZIPZ(~)I 

X(r-+co,fl)=O 

(334 

(33b) 

(33c) 

(33d) 
? 
$(r,ii= +l)=O WeI 

Xtr = l,P) = ~,,+&[XOIP~(~)+XIIP,(~)+X~IP~(~)I. tw 
Note that the interfacial temperature and concentration have been modeled in the same way as was done for 
the interfacial velocity. The parameters Z,s and X,,s introduced in (33~) and (33f) are interelated rather than 
being independent and their coupling is dictated by a phase equilibrium relation such as that recommended 
by Haliett [2 11, 

p,,, =exp[Xr-&j (34) 

where T, is the absolute surface temperature, P,,, is the saturation vapor pressure at the drop surface in the 
unit of millimeters of mercury, and xis are the fitting constants. As a word of caution, very small droplets, 
owing to the surface tension, exhibit a higher vapor pressure than bulk fluids by a factor of (1 + WS,IR@R, T) 
where S, is the surface tension, and R, is the universal gas constant and must be accounted for when necessary. 

For a pure liquid drop with a molecular weight F@, the mass fraction at the interface is 

1 WiP 
-‘l+i”w $-I . 
x* i ! 

(3.5) 
&it 

Upon substitution of the interfacial temperature for T, in equation (34), the resulting equation is then expanded 
for small E to give, after combining with (35), the following relationships : 

1 
-=I+@, 8,exp 

i [ 
-_x,+ x2 -1 

x00 &dTo-T,)+Tm+xs I i 
(36) 

X 
kl 

= x~(T~-T,)[x,,+X~,(~~-l)lz 

]Z,,(TC,-T,)+T, +x.712 
k,r k = 0,1,2. (37) 

To begin the derivation of the solutions of equations (35) and (36), we note that they are exactly identical 
for the case of a total analogy between heat and mass transfer (unity Lewis number). In many systems, the 
magnitudes of Pr and SC are nearly the same and the Lewis number is in fact close to unity. Assuming this is 
true, only the energy or the species continuity equation needs to be solved ; hence, the subsequent discussion 
is directed to the energy equation. 

Following the singular perturbation procedure described in ref. [20], the inner and outer solutions, denoted 
by superscripts i and o respectively, are expanded as 

T(r,ji) = fj c’Zk(r,@) (38) 
A=” 

z”tP,fi,a) = 5 F,(s)ZXp,fi) (39) 
kz-0 

where a strained coordinate p (= er) has been introduced in the outer expansion. Again, substituting expressions 
(38) and (39) into equation (31), followed by extracting terms of the same power in E yields a series of simpler 
problems for the dete~ination of Z;s and Zzs. For the lowest order approximation, Fendell et al. [22] derived 
the following solutions 

- U,,$ _ 1 
Z\(r) = Zoo e-P 

emow_ 1 (40) 

ZXP,~) = -Zoo 

o,, e-PrizP( 1 -!a 

p(e-“eo- 1) (41) 

where we have adopted the notation that ii,, = Pr iTloo. A similar definition is also assumed for other variables. 
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At the next door approximation, the equation becomes considerably complicated; however, a first order 
approximation can still be obtained with a reasonable amount of effort. The first order equation is given by 

(42) 

In view of the functional form of the velocity, it is plausible to assume the solution to be a linear combination 
of the first three Legendre functions, i.e. 

Z’,(r,P) = i .L~!m. (43) 
L=O 

This form of the solution transforms equation (42) into three linearly independent ordinary differential 
equations for which solution techniques have been well-developed, 

Z,,O,, eCOoJr 
emOm_ 1 1 , k=O (4) 

(46) 

subjected to the non-homogeneous boundary condition, 

fk(r=l)=Zk,, k=0,1,2. (47) 

General solutions of these equations are obtainable by using the series expansion technique to yield one 
solution to the corresponding homogeneous equation, whereas the other independent solution sought via the 
method-of-reduction of order. Once complete, the particular solution is obtained by the method of variation- 
of-parameters. Further details leading to the results are given elsewhere [23]. 

foW =Z,,+s 
- ( epOdr _ 

7-e muoo 
> 

+ Co(e-oooIr _emr;oo) 

f,(r) = emi’d G(r)-G(l)+ & 
00 1 

+c, 

f2W = (C2-Q(l)>(~~o-6r~oo+12r2) 

(r- +)~e-“~~] (49) 

+(O&,-6r0,,+12r2) V(r)+ _ 
z2, 

U&,-6U,,0+ 12 > 
(50) 

where G, H, Q, and V are functions of the radial coordinate, and are defined by 

H(r) = 
4&l, 

O&(e-“~~ - 1) 
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where C,, C, , and Cz are the constants and remain to be determined from the matching asymptotic condition, 

Zl,(r-‘~,~)+&Z~(r--toD,~)+O(~2)=Fo(&)Zo(p-,0,~)+O(F,(&)). (55) 

By using the procedure outlined by Van Dyke [24], the coefficients are found to be 

c =z 2 UoiZoo e-‘on-- OooZoo 
0 

-__ 

2(ep”uo_])2 
+ 

Z,, 
e (56) 

221, 
+--- -H(l)-G(1) 

2- uoo 1 (57) 

C, = Q(l)+ 

It should be noted that FO(a) has been chosen to be E so that the above matching process is accurate up to the 
first order in E. The constant Cz requires the evaluation of definite integrals which can be done by means of 
Gaussian quadrature of the moments. 

3.3. Heat transfer in the drop inferior 
In the dispersed phase, the liquid heating process is described by the unsteady convective-diffusion equation, 

where z (=& ci/R’ dt’) is the dimensionless time. The initial and boundary conditions are 

Z(t = O,r,/T) = 1 

g(z,r = 1,/i) = ~~o+~~Z01~o(lll)+ZI,~,(~)+Z2,P2(~)l 

a2 
~(z,r-+O,fi) = 0 

ai 
z(T,r,jl= _tl) =O. 

WW 

(bob) 

(6Oc) 

(60d) 

The above equations do not possess any singularities; hence, the regular perturbation technique is well-suited. 
Owing to this feature, the interior tem~rature is now sought in the form 

Z(r,r,$ = 2,(~,r)+&i,(5,r,~)+O(E2). (61) 

Inserting this truncated series into the governing equation yields sets of equations to be solved for 2, and 2,. 
For the first two leading approximations, the equations for 2” and 2, are 

LTcl _ L a ( > 2 32, 
aT - r2 ar -rdr (62) 
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(63) 

The initial and boundary conditions become 

i,(z = 0,r) = 1 

Z,(t,r = 1) = z,, 

a& 
ar(r’Y+O) =o 

.2,(2 = O,r,@) = 0 

P,(‘c,r = 1,P) = z,,~,(P)+z,,~,t~)+z,,~*(~) 

(64a) 

(64b) 

(64c) 

(W 

(65b) 

It is appropriate to add a remark here that the boundary conditions are time-dependent and the solution 
procedure consists of two steps : first, the method of separation of variables is utilized to get the solution to 
the auxiliary problem. Next, the solution to the present problem with time-varying boundary condition is 
obtained from the corresponding auxiliary solution by an application of Duhamel’s theorem. Because the 
solution process is lengthy and tedious, the readers are referred to ref. [23] for the missing details. Thus, the 
results are summarized as follows : 

Zo(z,r) = Zoo+2 g (- I)k%$ 2 ’ (Zoo- 1) e-fi:(‘-i) di 
k= I . cs 0 1 

(66) 

(67) 
k=O 

where 
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(76) 

(77) 

(78) 

where Bk = kz. q and ylr are the positive roots of J,,,(w,) = 0 and J5,2(yk) = 0 respectively. 
A quick inspection indicates that the above analysis is accurate to 8’. With that in mind, the time-dependent 

temperature distribution can be calculated at any location throughout the two-phase system once the surface 
temperature is specified. Since it is not known a priori, it deserves to be addressed in the next section. 

3.4. Droplet time history 
One of the most useful parameters in droplet evaporation is its regression history. To obtain that information, 

the interfacial velocity is now related to the mass fraction. In terms of weighted mass fraction, it is expressed 
as 

fJ,= -:E(r=l,H) 

where the subscript s pertains to the value at the drop surface. With the aid of the mass flux obtained from 
the inner solution, the resulting expression is then arranged in powers of E to give 

(24-6o,,)X,, +Czx e- ‘~1~ 

CJ&,-6U,,+ 12 I 
(83) 

where an extra subscript x added to Cj has been used to denote coefficients of the concentration profile. 
Another independent surface condition is secured by requiring the continuity of the local energy flux across 
the dispersed-continuous interface stated in mathematical form as 

(84) 

where q, K, es, and /I are the absorptivity, the thermal conductivity, the density, and the Stefan-Boltzmann 
constant, respectively. R, is actually equivalent to the total thermal resistance, and is equal to (1 - c$)/c$ + l/q. 
Because the latent heat of vaporization is generally a weak function of temperature, Zr, is taken to be constant. 
With regard to the thermal radiation, we have treated the drop as an opaque spherical particle exchanging 
radiant energy with the ambient gray gas so that the portion of the irradiation which is not absorbed is, 
therefore, reflected back into the surrounding. Obviously the radiation interaction modeled here is only a crude 
approximation, but is satisfactory for practical purposes since the emission and absorption of the gas tend to 
cancel each other out [25]. Also, scattering is unimportant for very small particles. After performing the 
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indicated partial differentiation, the rearrangement of the resulting expression leads to a set of four non-linear 
integral equations of the Volterra type, 

Z,, e-@-i) dJ_ = 2 [ (~)~ooUo, +C,ii,,] e-‘oo- $$2,Uo, 

-2rp& (y) [~z,,, I]1 zo, (86) 

Z,, e-w~(r-A) dil = 4@, fir L?(z, l)+e:,(r, 1)+-Z,,(z) 

C, Oi, e-“oc 
-- _ -~~,,]+407~~*~(~)[~~,,+I])Z,, (87) 

2(2 - U00) 

_* (24-6800)Z,, +Cz e-oo, 
K 

where qeR (= cp/R,) the effective absorptivity. The superscript ‘prime’ indicates the derivative with respect to 
the radial coordinate. The dimensionless constants R , and Q2 are the inverse Jacob number and the inverse 
conduction-radiation parameter respectively, i.e., 

R, = Xfg CTTZ 
C,(T,-T,)" Q2 = kp(T,-T,) Wa,W 

in which C, is the heat capacity at constant pressure. 
All of the above integral equations have a special feature in that the kernels exhibit convolutional structure. 

Furthermore, they are uncoupled in a sense that they can independently be solved sequentially using the 
numerical procedure in Nguyen [23]. Due to the nonhnearities, iteration is required in advancing the solution 
from one time-step to the next. 

The vaporization rate, ti, may be found by integrating the radial interfacial velocity over the drop surface 
so that 

n&2 dLt’ 

I 

I 
ti= -Ddz=71L)Qv f~oo+&t~o,+U,,~,jji)+U~,P~fR)]dC1. 

-1 

= 27rD@v(U,,+EUo,) (90) 

in which only the uniform terms (Uoo and LJ,,) survive whereas the net contribution from P, and PZ terms 
are identically zero. Alternatively, equation (90) can be rewritten as 

d(ln 02) 
p= 

dr (91) 

Due to the time-dependence of the perturbation variable, E, we shall need another equation to complement 
equation (91). One way of doing that is to write the Newton’s second law for the motion of the drop, 

(92) 

The expressions derived thus far are primarily for an evaporating droplet ; however, the treatment is general 
and is well applicable to a condensing droplet. In the latter case, one needs to have a compatibility condition 
for the condensation process to replace the interfacial thermodynamics relating temperature and concentration. 
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4. SAMPLE CALCULATIONS AND DISCUSSION 

To the authors’ knowledge, very few studies conducted in the past have addressed the transient nature of 
the interfacial quantities associated with an evaporating droplet. More often than not, they are only concerned 
with the physical parameters that are of practical interest and overlooked the detailed mechanisms particularly 
at the interface. In order to demonstrate the usefulness of our present formulation, we have calculated the 
time evolution of the interfacial temperature, concentration, and velocity of an Octane-Air system. These 
fundamental quantities undoubtedly play a major role in the phase change process. The selection of octane as 
a test liquid is just a matter of convenience because of the availabiiity of its the~ophys~cal properties in the 
literature. Table 1 below gives a listing of the physical properties of various fuels. 

The physical system we now analyze consists of a droplet at an initial temperature of 298 K moving at a 
velocity equivalent to Re = 0.1 in an unbounded gaseous medium held at 380 K and both media are under 
the influence of an electric field whose strength is chosen such that it produces a maximum velocity equal to 
that generated by translation (?V = 1 .O). With the system so defined. the flow patterns inside and outside the 
drop are given in Fig. I at two different instances (z = 0. I and 0.5). As clearly shown in the figure, the electric 
field modifies the internal flow by doubling the number of closed contours which are nearly symmetrical about 
the y-axis, and almost equal in sizes, These loops may run from the pole toward the equator or vice versa 
depending on the electrical properties of the two phases. To be specific, the former is appropriate for a positive 
w whereas the latter is suitable for a negative YY. Outside the drop, there are two distinct regions, both of 
which are essentially unaffected by the electric field. Within the inner region, all the streamlines emanating 
from the drop surface would redirect themselves into the direction of the freestream. On the other hand, the 
motion in the outer region resembles the flow past a bluff object with the dividing streamline considered to be 
the shape of the body. A detailed examination of the figure indicates that the dividing streamline tends to be 
pushed away from the drop surface as the elapsed time increases until it reaches an equilibrium position where 
the distance from the drop center is controlled by the intensity of the evaporation process. Due to the non- 
vanishing initial interfacial velocity, the starting location of the dividing point would not be on the surface as 
opposed to the case of flow without mass transfer. For YV = -25, recirculation is established in the wake as 
shown in Fig. 1 (c). A more detailed discussion on the various flow structures including the recirculating bubble 
in the wake and the effects of the electric field on the dividing streamline are given in Nguyen and Chung [19]. 

In Fig. 2(a) we plotted the time evolution of the interfacial temperature of an octane drop under evaporation 
in air. The data reveal that the temperature is almost uniform over the drop surface at any time since the 
coefficients of the angular terms (Z, , and Z,,) are much smaller than the leading order solution (Z,,,), that 
attains a time-invariant state with a value 2.5% lower than the initial temperature of the droplet. This aspect 
of the interfacial tem~~dture would suggest a possible s~mpli~cation to the problem which is to assume an 
angular-dependent-free condition for the interfacial temperature. Of course, this is true as long as the trans- 
lational velocity is limited to the creeping regime. A separate study is currently underway to assess this 
assumption at high Reynolds numbers, and the findings will be reported in a later note. It should be mentioned 
that for the system under consideration, the initial interfacial temperature is close to the initial drop tempera- 
ture, but this is not always the case in practice. In fact, the actual value is dictated by the thermal conductivities 
of the fuel as well as the ambience. The graph also illustrates, as one now recognizes, that the two-phase 
transport problem should be treated as a conjugate problem rather than an internal/external problem because 
the drop fails to keep its interior at the interfacial temperature. 

Since a reduction in dimensionless temperature corresponds to an increase in dimensional temperature, the 
concentration of the drop material, as governed by the equation describing the phase change phenomena at 

Table 1, Physical properties of air-fuels 
._-- 

Air n-Octane n-Decane 
--- 

e, gem-’ 4.12x lO-1 0.661 0.708 
ti, cal s- ’ cm- ’ K ’ 5.12 x 1om5 2.65 x lWJ 2.71 x lO-J 
p,gs-‘cm-’ 5.52 x IO--* 3.83 x lO-3 4.53 x lo-i 
C,, cal gg’ K-’ 0.241 0.503 0.496 
2, cm’ s- ’ 0.142 0.105 
Z”,, cal g _ ’ 76.65 76.92 
T,,, ‘C - 125.66 174.12 
W, g mol- ’ 29.0 114.224 142.276 
Xl? 15.9426 16.0114 
X2 t - 3120.29 3456.80 
X,t - -43.43 - 78.67 

t Antoine constants used in equation (38). 
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FIG. 1. (a) Stream function contour of an octane drop vaporizing in air at z = 0.1. (b) Stream function 
contour of an octane drop vaporizing in air at r = OS. (c) Stream function contour inside and outside a 

drop. 
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the gas-liquid contacting surface, consequently increases as time proceeds. Realistically, the phase change 

occurs so fast that the combined diffusion and convection could not keep-up with the gasification rate, hence 
a material build-up of the evaporating species follows as seen in Fig. 2(b). Although the angular variation of 
the concentration of the vaporizing species in the gas phase is negligibly small, the interfacial velocity is strongly 
angular-dependent as demonstrated in Fig. 2(c). Except the term responsible for the contribution due to the 
electric field, whose role is important primarily in the early stage of the evaporation process, UO, and U, , each 
contributes more than 10% of the leading order velocity especially at small time. 
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FIG. 2. (a) Surface temperature of a vaporizing octane drop. (b) Surface concentration of a vaporizing 
octane drop. (c) Surface velocity of a vaporizing octane drop. 
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FIG. 3. Instantaneous diamier of an octane drop. 

In Fig. 3, the square of the dimensionless drop diameter is plotted against time at three ambient temperatures : 
350, 380, and 400 K. In all the cases, the d2-Law is recovered as expected instead of the d3@-Law for a drop 
exposed to a strong convective environment because the rectilinear motion of the drop is one order-of- 
magnitude smaller than its radial counterpart. Accompanying Fig. 3 is a plot, Fig. 4, of the drop size history 
for different fuels having considerable difference in boiling temperatures. The octane drop evaporates faster 
mainly because it has much lower boiling point and higher diffusion coefficient. 

The results presented thus far did not take into account the exchange of radiant energy because the 
temperature is considered to be relatively low for thermal radiation to have an appreciable impact. However, 
when the drop is subjected to a combustion environment where the temperature is of the order of thousand 
degrees, the effects of radiation may become significant. As a test case for our current model, we present the 
result regarding the influence of thermal radiation upon the evaporation rate as depicted in Fig, 5 for a drop 

1 2 
7 

FIG. 4. Drop size history of various fueis. 

FIG. 5. Effect of radiation on evaporation rate. 
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initially held at room temperature (298 K) exposed to an ambience at 2000 K. Here we assumed, as typical 
values, the absorptivity of 0. I and 0.001 for a small drop and surrounding gas, respectively. From the figure, 
the effect of radiation is simply to shorten the heating-up period, hence the drop lifetime, without changing 
the slope of the &-Law. Even for an ambience as high as 2000 K, the drop would disappear only about 5% 
of the total residence time quicker. 

Although the contribution of radiation in the test case is small, one should be aware of its role as the 
temperature increases due to the fact that radiation is proportional to T4. Nonetheless, when radiation is 

impo~ant the current analysis would offer a great advantage in that it can handle the nonlinear boundary 
conditions without any additional computational difficulties. Furthe~ore, the computing time is virtually 

unchanged so that one would be allowed to concentrate on other effects associated with the phenomena at the 
interface such as the surfactant effects, for example. In any case, a complete physicochemical run consumed 
not more than 150 s of CPU time on an IBM-3090 for 3500 time steps with an increment of 0.001. Unlike the 
work of Gogos et al. [26] where the equations seem to couple together, and hence the solutions require a 
simultaneous simulation that would be costly in terms of the computing time, the present model eliminates 
them. This was accomplished by solving the integral equations for the interfacial parameters before the global 
equations are addressed. Such eliminations were made possible since they were only introduced through the 

boundary separating the two phases. 
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